蒋利军:发展中的固态储氢材料

光山新闻网 林晓舟 2020-03-26 11:06:24
浏览

 
 
蒋利军:发展中的固态储氢材料  
 

当前我国正面临着能源安全和碳排放两大挑战,必须调整当前过度依赖化石能源的能源结构,向着低碳、清洁、智能化的方向发展。

将氢能纳入到我国整个能源体系中,有助于改善我国的高碳能源结构,保障能源安全。其应用不仅是备受关注的燃料电池汽车,还应包括氢能发电、工业应用及其建筑应用等。

国家有色金属新能源材料与制品工程技术研究中心主任蒋利军认为,在整个氢能供应链中,高密度安全储运氢已是主要的瓶颈问题。采用固态储氢既可以大幅提高体积储氢密度,又可以提高储运氢的安全性。可为解决人们最关心的氢能高密度储存和安全应用这两个问题,提供重要的解决方案。

密度高又安全的固态储氢

“固态储氢相对于高压气态和液态储氢,具有体积储氢密度高、工作压力低、安全性能好等优势。”蒋利军说,如与燃料电池一体化集成,可充分利用燃料电池余热,吸热放氢,降低系统换热用能,使得整个燃料电池动力系统的能源效率得以提高。

氢具有最高的重量比能量,但其体积能量密度很低。因此为将氢能推向实用,需大幅提高氢能的体积能量密度。

蒋利军介绍,目前一般采用高压压缩、液化或固化的方式,提高体积储氢密度。在这三种方式中,固态储氢具有最高的体积储氢密度。

因此,采用固态储氢是提高体积储氢密度的最有效途径。这是由其本征的储氢特性所决定的,氢气先在其表面催化分解为氢原子,氢原子再扩散进入到材料晶格内部空隙中,形成金属氢化物,因而其储氢密度比液氢还高。

此外,虽然氢气具有容易向上逃逸、迅速扩散的安全优势,但也依然存在着一些固有的安全隐患,如其粘度最小,易泄漏,同时氢气燃烧浓度极限范围宽,当氢气出现泄漏并局部聚集,如遇火源,易发生燃爆。

高压储氢存在着高压泄漏、液氢储氢存在着蒸发泄漏等安全隐患,固态储氢可做到常温常压储氢,储氢容器易密封,并且当发生突发事件,出现氢气泄漏时,由于固态储氢放氢需吸收热量,因而可以自控式地降低氢气泄漏速度和泄漏量,为采取安全措施赢得时间,从而提高了储氢装置的使用安全性。

固态储氢材料成果丰硕

蒋利军告诉《中国科学报》,近年来,国际上在固态储氢应用和新型储氢材料的研发方面取得了诸多进展。

成熟的储氢材料已在热电联供、储能、摩托车载燃料电池等多个领域得到应用。德国HDW公司将开发的TiFe系固态储氢系统用于燃料电池AIP潜艇中,取得了固态储氢迄今为止最成功的商业应用。

我国近年固态储氢应用也取得了较大进展。TiMn系固态车储氢系统已成功应用于燃料电池客车中,不需高压加氢站,在5MPa氢压下15分钟左右即可充满氢,已累计运行1.5万公里。40m3固态储氢系统与5kW燃料电池系统成功耦合,作为通信基站备用电源,可持续运行16小时以上。小型储氢罐已批量用于卫星氢原子钟中,为其提供了安全氢源。并已形成了3项固态储氢相关国家标准。

据蒋利军介绍,尽管上述储氢材料技术已较为成熟,并得到了实际应用,但其重量储氢率仍然偏低,难以满足车载储氢的技术要求,需要更高重量储氢率的新型储氢材料。这些高容量储氢材料多为轻元素形成的离子键、共价键氢化物,但键合力太强,放氢温度过高。

蒋利军说,对于这些新型高容量储氢材料,目前主要通过纳米化、复合化和催化等方法,来调控其热力学、动力学和循环寿命性能。近年也取得了一些重要进展。